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Using the averaging method and a perturbation technique originally due to Melnikov 
(1963), we show that an N-degree-of-freedom model ofweakly nonlinear surface waves 
due to Miles (1976) has transverse homoclinic orbits. This implies that Smale 
horseshoes, and hence sets of chaotic orbits, exist in the phase space. In this particular 
example, an irregular ‘sloshing’ of energy between two modes of oscillation results. 
We briefly discuss the relevance of our results to recent experimental work on 
parametrically excited surface waves. 

1. Introduction: surface waves in a vertically oscillating container 
When a container of fluid is subject, to vertical periodic oscillations, a pattern of 

standing waves often appears on the free surface. Faraday (1831) and Lord Rayleigh 
(1883a, b) studied such ‘crispations’ experimentally and noted that the surface- 
oscillation frequency was typically one half that of the forcing frequency. Benjamin 
& Ursell (1954) showed that the linearized theory of irrotational motions of an ideal 
fluid in such a container led to an infinite set of Mathieu equations, and thus 
accounted for the observed frequency demultiplication. Moreover, while their theory 
was inviscid, the stability boundaries computed for the primary (i) resonance agreed 
well with experimental measurements. 

More recently, Keolian et al. (1981), Keolian & Rudnick (1984), Gollub & Meyer 
(1983) and Ciliberto & Gollub (1984,1985) have repeated the experiments with a view 
to detecting irregular or chaotic motions such as those found in many other fluid- 
mechanical systems (cf. Swinney & Gollub 1981). The latter authors, working with 
water, used a circular basin and studied the surface waveforms both spatially and 
temporally using surface-imaging and laser-beam-deflection methods. Gollub & 
Meyer (1983) examined the loss of stability of a single circularly symmetric mode and 
period-doubling bifurcations associated with it. At relatively high amplitudes they 
found temporally chaotic motions involving azimuthal spatial modulation. Ciliberto 
& Gollub (1984, 1985) studied the interaction of a pair of non-circularly symmetric 
modes at  somewhat lower forcing amplitudes and found quasi-periodic and ‘ chaotically 
modulated ’ motions unaccompanied by significant increase in spatial complexity 
(their spatial Fourier transforms indicate that most of the energy continues to reside 
in the two ‘linear’ modes). Keolian et al. (1981) and Keolian & Rudnick (1984), using 
liquid helium and water in thin annular troughs, observed both period doubling and 
quasi-periodic motions apparently involving three modes, but their spatial data are 
less clear. 

Somewhat earlier, Miles (1976) proposed a weakly nonlinear model for surface waves 
in such containers, which takes the form of an N-degrees-of-freedom Hamiltonian 
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system with weak dissipation, the latter being primarily due to friction at the 
container walls (Miles 1967; Benjamin & Ursell 1954). Miles (1984u-e) has recently 
returned to (N 2 2)-degree-of-freedom versions of this model in the light of recent 
developments in bifurcation and dynamical-systems theory. Concentrating on the 
case of horizontal excitations, he has found both steady (periodic) bifurcations 
and Hopf bifurcations to quasi-periodic motions and has numerically demonstrated 
that chaotic motions appear to be possible in the two-mode model, under various 
resonance conditions. However, on the basis of such numerical studies, he finds no 
evidence of chaos in a (N > 2)-mode model, at least for the moderate damping levels 
studied (Miles 1984 e)  . 

In this paper we examine Miles’ model using the global perturbation techniques 
for ‘almost Hamiltonian’ systems developed by Holmes & Marsden (1982a, b, 1983) 
based on the Melnikov (1963) method. Our main aim is to outline and apply a method 
which enables one to rigorously prove the existence of chaotic motions in a wide class 
of such systems. The method has already been used in structural-vibration problems 
and has been applied to a nonlinear partial integrodifferential equation arising in 
beam theory (Holmes & Marsden 1981). For background information see the papers 
cited and Greenspan & Holmes (1983) and Guckenheimer & Holmes (1983, chap. 4). 
The present application introduces several new technical problems. Using the 
completely integrable limit obtained after averaging and in the absence of external 
forcing as a basis (Miles 1976, $7) ,  we are able to prove that, for suitably small forcing 
and dissipation, chaotic motions of a precise type (Smale horseshoes, see Smale 1963, 
1967) exist in both the two- and (N > 2)-degree-of-freedom models, for certain 
parameter ranges close to 2 : 1 subharmonic resonances. Our analysis is qualitative; 
we do not carry out calculations for specific container geometries (cf. Miles 1976, 
1984c-e), but rather seek general results for a wide class of systems in the limit of 
weak nonlinearity, forcing and damping. In particular, the validity of our canonical 
transformation, averaging and perturbation procedure depends only on the existence 
of a 2 : 1 internal resonance and the absence of other internal resonances of the forms 
wk&wt&wm = 0, where o k  are the linearized natural frequencies defined in $2. Our 
results are certainly suitable for application to systems with anharmonically related 
normal modes, such as the circular cylinder of Miles (1976, 1984c,d). However, a 
rectangular tank (Miles 1984 e), having approximately harmonically related modes, 
is more likely to exhibit additional resonances and our methods might require 
modification in that case. While we only consider the vertically forced container, we 
expect similar results to hold for horizontal forcing and for other resonance ratios. 
The chaotic motions we find, even when N % 2, involve primarily two surface modes, 
and are thus relatively simple spatially; the chaos is temporal. 

Miles’ model is derived using a finite-dimensional representation : 

N N 

for the surface y = q(x, t) and velocity potential q5, for fluid of depth d at rest in a 
container of horizontal extent D c R2. Thus y = -d and xEaD denote the fixed 
boundaries. Lagrangian and Hamiltonian formulations eventually lead to a finite- 
dimensional system of ordinary differential equations for the configuration variables 
qn(t)  and their conjugate momenta p n ( t ) .  In the case of vertical excitation, the 
Hamiltonian is 

(1.2) H ( q , p )  = t i  X hmnpmpn+E Sp;) ,  
m .  n n 
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where = g + X 0 ( t )  is the acceleration due to gravity and the imposed motion Xo(t) 
of the container and (’) denotes d( ) / d t ;  cf. Miles (1976, 19846). We shall assume the 
container does not move horizontally. [hmn] is a symmetric matrix, the entries of 
which may be expanded as power series in the modal amplitudes qn : 

In  (1.2)-(1.3) all sums are taken from 1 to N, the total number of modes (degrees 
of freedom) included. For details of the derivation of the model and computation of 
the coefficients k n ,  hlmn, etc., see Miles (1976). 

An important requirement of our analysis is that the system be weakly dissipative, 
so that various high-order resonant effects are not present. We therefore include the 
generalized dissipative forces F = fx,, f , q i  in the Lagrangian (cf. Miles 1976, $3), 

which leads to the final system of 2N evolution equations 

( n =  1,2, ..., N ) ,  (1.4) I an = k n P n +  E h , m n q , p m - a n q n + . . *  > 
1,  m 

2in = - ( g + X o ( t ) ) ~ n - f  x h n t m P 1 P m - a n p n + . * *  
1 ,  m 

where hrjk = h,, and the vertical acceleration amplitude I Xo( t )  I and the damping 
coefficients a, are supposed to be small, but not so small as the terms hjlmn and higher 
in (1.3), which have been ignored. We note that, when dissipation and nonlinear terms 
are neglected, and Xo(t) is taken to be sinusoidal, (1.4) reduces to the set of uncoupled 
Mathieu equations derived by Benjamin & Ursell (1954). 

In this paper we start with the formulation (1.2)-(1.4) and assume that (perhaps 
after suitable scaling) the terms him,, hjlmn, etc. are small compared with the ‘linear’ 
terms kn.  In $ 2  we apply successive canonical transformations, averaging and 
truncation to obtain an integrable system in the case that Xo(t )  = 0. This is essentially 
a repetition of Miles’ (1976) analysis, with the vertical excitation term included. We 
find that the integrable system has homoclinic orbits (separatrix loops). In $3 we 
outline the Melnikov perturbation computations for the two-degree-of-freedom 
system and show that, for sufficiently small periodic excitations Xo(t ) ,  transverse 
homoclinic orbits and consequently Smale horseshoes exist. In $4 we discuss technical 
problems which arise in the N > 2-degree-of-freedom forced Hamiltonian system and 
explain the role of damping in ‘removing’ the higher modes. However, the presence 
of damping introduces other complications into the analysis and the perturbation 
theory must be adapted to deal with these and to show that horseshoes can still occur. 
We relegate technical material and outlines of proofs of results in these two sections 
to the Appendix. 

In  $5 we describe the consequences of the existence of horseshoes for the full 
(unaveraged) system and the effects of higher-order terms. Finally, in $6 we describe 
the implications for surface motions of the fluid. We do not attempt to make 
comparisons between the predictions based on our qualitative analysis of Miles’ 
weakly nonlinear model and the (strongly) nonlinear experiments of Keolian et al. 
(1981), Keolian & Rudnick (1984) and Gollub & Meyer (1983). However, our theory 
is more relevant to the Ciliberto-Gollub (1984, 1985) experiments and it is significant 
that in both cases the interaction of two modes leads to temporal chaos. 

A philosophical note is in order here. Ruelle & Takens (1971) suggested that the 
chaotic orbits of strange attractors might provide a model for hydrodynamic 
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turbulence. Strange attractors are complicated attracting sets of ordinary or partial 
differential equations or iterated mappings : the orbits within them exhibit sensitive 
dependence on initial conditions (Ruelle 1979) and they are typically of low 
dimension. Technically, a strange attractor is a closed subset, invariant under the 
flow of the equation, which attracts a neighbourhood of positive Lesbesgue measure 
of nearby orbits, and which contains a transverse homoclinic orbit and a dense orbit, 
cf. Guckenheimer & Holmes 1983, chapter 5.) Loosely speaking, the Ruelle-Takens 
suggestion implies that  (certain types 04 turbulence might involve only a few active 
degrees of freedom. Since then a great deal of work has been done with a view to 
demonstrating that strange attractors do occur in fluid mechanics. While several 
candidates have been identified in low-dimensional systems, including the famous 
Lorenz (1963) equations, which are a drastic truncation of a model for Rayleigh- 
BBnard convection, there is little t hcoretical evidence for strange attractors in 
realistic model equations for fluid problems. (The experimental evidence is somewhat 
better.) The present paper shows that some of the features of a low-dimension strange 
attractor occur in the surface-wave model, and thus provides more evidence, although 
i t  is not entirely satisfactory technically (dense orbits cannot be proven to  exist; 
almost all orbits might be asymptotically periodic) or practically, since the temporally 
chaotic motion found is spatially simple. 

We nonetheless feel that  the present analysis is significant, since i t  provides a firm 
basis for statements about chaotic interactions between surface-wave modes. 
Moreover, in the analysis an important technical problem is unexpectedly illuminated. 
For E = p = 0 (cf. $ 2 )  the unperturbed system is linear and hence extremely 
degenerate. The Melnikov perturbation theory generally requires strongly nonlinear 
limits and ‘large ’ unperturbed homoclinic orbits. Weak nonlinearities and the use 
of averaging typically lead to ‘exponential smallness ’ and serious technical problems 
(Guckenheimer & Holmes 1983). Here, however, the three-way, resonant interaction 
between the two free modes and the forcing frequency preserves the mean force level 
as a symmetry-breaking perturbation even after averaging, and the difficulties are 
thereby avoided, see $§3 and 4. While the single-mode, averaged model considered 
by Miles (1984b, equation (4.1)) possesses homoclinic orbits similar to those of 
figures 1 and 2 (cf. figure 2 of Miles 1984b), for example, i t  appears that simple restora- 
tion of time-dependent terms removed by averaging leads to exponential-smallness 
problems. 

After this paper was written, we learned of work in progress by I. Procaccia who 
is using invariant-manifold and normal form theory in an analysis of the partial 
differential equations of the irrotational, inviscid formulation of the surface-wave 
problem. He has computed numerically realistic values of the coefficients involved 
and preliminary results show a good comparison between theoretical stability 
boundaries and the measurements of Ciliberto & Gollub (1985). 

2. Canonical transformations and averaging 
We first make our smallness assumptions precise. Let huh = dijk, Xo(t)  = ,uxo(t) 

and a, = pZ, with 0 < e2 4 ,u < E < 1 and assume hyk, and all higher-order terms 
in (1.3) are of O(e2). For example, onc can take ,u = E*. Next, letting w, = (gk,)i be 
the resonant frequency of the linoarized nth mode and applying the canonical 
transformation 

qn = 2wn@, cosg,, p ,  = -(-)’ 2g@n sini, 
wn 
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(Goldstein 1980), we obtain from (1.2) the transformed Hamiltonian 

+ s  glmn (a)' (jjl$m$n)' cos41 sindm sindn+0(s2); (2.2) 
1 ,  m, n wm W n  

cf. Miles (1976, equation (7.3)). Transformation of the dissipation terms 

P(-Znqn, -%,Pn) 

for each mode leads to dissipation terms 

~ ( 0 ,  -2% @n) 

in the new coordinate system. 

(2n/w)-periodic sinusoidal forcing function 
Our analysis now departs from Miles'. To proceed further, we take a specific 

X0(t) = 0 2  coswt, (2.3) 

2wl-w2 = €0; w2-w = s A ;  a, A = O(1). (2.4) 

and we assume the resonance relationship 2w1 x w2 x w so that 

Moreover, we assume that the higher modes are non-resonant ; specifically that 
I wk f w1 fw, I 2 S @ E for all k, 1,  m 2 3, where S is a fixed constant. Thus we are close 
to 2 : 1 internal resonance of the first two modes, coupled with 2 : 1 resonances and 
1 : 1 resonances between the external force and the two free modes respectively. Other 
cases (such as 20, x w2 x *) can be treated similarly, although not all resonances 
lead to integrable, averaged systems amenable to the analysis developed here; cf. $6. 

Using the generating function 
N 

k-3 
$ 1 & 1 + @ 1 + ~ $ 2 )  ( & ~ + % t ) +  Z $k(&k+wktt), (2.5) 

and associated transformations 

we obtain from (2.2) the transformed Hamiltonian 

w2w1 

4s 
+eIp(Q, P, wt) +pH2(&, P, wt) + O(s2). 

H = E { $ ~ P ~ + ~ A P ~ + ~ / ~ P ~ ( ~ ( P ~ - P ~ ) ~  c0s2Q1)-p- Pl cos(2Q,+2Q2) 

(2.7) 

Here /3 = (g/2w2)1 [Ell,- (w2/2w1) &ll] = O(1) and Ip and H2 are rapidly varying in 
t and have zero mean, regarded as functions of t ;  typical terms being 
cos (mQl + nQ2 + Zwt). The dissipation terms transform to 

= p( -2(al-a2) P1-2a2 Pz, -2z3 Ps, . . , PN). (2.8) 

x = sXO(Z)+pUX1(Z)+EY(X,t)+pZ(Z,t)+O(E2), (2.9) 

The perturbed Hamiltonian differential equation obtained from (2.7) is the form 
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where 
x = (i) E !J3TxTN 

and Y ,  2 are 2x/w periodic in t .  Applying the near-identity transformation 

2 = Y+EU(y,t)+pV(Y,% (2.10) 

9 = Exo(y)+,u~(y)+o(E2,~,uu,p2), (2.11) 

with aU/at = Y ,  aV/at = 2, (2.9) becomes 

where the 0 ( s 2 ,  ep,,u2) remainder term in (2.11) is Zn/w-periodic in t and uniformly 
bounded. The averaging theorem (Hale 1969; Guckenheimer & Holmes 1983) then 
implies that non-degenerate (i.e. hyperbolic) stationary and periodic solutions of the 
truncated system 

Y = ~ X 0 ( Y ) + P W / )  (2.12) 

correspond respectively to 2x/w-periodic and quasi-periodic solutions of the full 
system (2.11) or (2.9). More generally, if (2.12) possesses a hyperbolic invariant set 
A ,  then (2.9) will possess a hyperbolic invariant set A’ near A ,  as we describe in $5 
(Guckenheimer & Holmes 1983; Hirsch, Pugh & Shub 1977). 

Carrying out averaging for the present Hamiltonian system with dissipation, 
(2.7)-(2.8), we obtain the truncated system 

P, = E/~P,(~(P,-P,))~ sin2&,-p p1 sin(2&,+2Q,)+2ul~, 

(2.13) I I P, = - p { ~ P l s i n ( 2 Q l + 2 Q 2 ) + 2 ( a , - a 2 ) P , + 2 a , P ,  , 

Pk = -2pak pk, 

Qk = 0 (k = 3, ..., N ) .  

Here we have dropped the bars on the 0(1 )  damping coefficients an. In Miles (1976, 
$7)  the averaged system without forcing or damping is studied. Settingp = 0 in (2.13) 
we obtain a completely integrable, Hamiltonian system, since the angles Q,, . . . , QN 
are cyclic coordinates. The Hamiltonian energy 

H = E {$2P, ++LIP, + i/3P1(2( P2 - Pl))4 cos ZQ,}, (2.14) 

and the actions P,, . . . , PN provide a set of N independent integrals in involution with 
respect to the Poisson bracket {F ,  c) = Zf-, [(aF/a&,) (aG/aP,) - (aF/aPn) (aG/a&,)] 
(Goldstein 1980). We will use the integrable structure in the following sections. 

We now describe this structure. Since in (2.13) pk = 0 for k = 2, ..., N when ,u = 0, 
all the Pk except PI remain constant and we need only study the (Pl, &,)-system. After 
integration of this system for fixed P2, &,(t) may be solved for directly. Standard 
phase-plane methods, including computation of fixed points and linearization, yield 
the phase portraits of figure 1 for P2 held fixed and various values of the internal 
detuning parameter Q = (2w,-w2)/s. The relevant region of the phase space is 
bounded by the line P, = P2, on which the vector field is singular, so that the fixed 
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FIQURE 1. (P,,&,)-phase-plane of (2.13) when p = 0, Pa fixed. (a) Q < -/3(2P2)4; (b )  
-8(2P2)! < R < 0; (c) Q = 0; (d) 0 < R < /3(2P,)i; (e) R > /3(2Pa)!. The phase portrait is shown 
for 0 < &, < IC only, since it is rr-periodic in &,. 

points and orbits on this line have no physical meaning. For our purposes the 
heteroclinic orbits (saddle connections) to the fixed points at 

and the closed orbits in their neighbourhoods are most important. Thus we will 
require that I Q I < /3(2P2):. The heteroclinic orbits lie on the level set 

H = s{$2Pl+~AdP2+f~Pl(2(P2--Pl))t cos2&,} = +SAP2, (2.15) 

or Pl = 0 and Q +/3(2(P2 - Pl))i cos 2Q1 = 0, and the heteroclinic orbits based at 
Pl(0) = P2-Q2/2p2 and Ql(0) = 0, n (SZ < 0) or &,(O) = in, in (a > 0) are given by 

sech2 (e(2pP2-Q2)it), (2.16a) 

Ql(t)  = id2 J: pl(s) ds (resp.+n,fn,in), (2.16b) 
P2-P1(S, 

( 2 . 1 6 ~ )  
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as the reader can check by direct substitution into (2.13)-(2.15), withp = 0. (We note 
that P2 - Pl > 0 for physical relevance, so that singularities do not occur.) The closed 
orbits near this level set can be expressed in terms of elliptic functions. Henceforth 
we shall restrict our analysis to  the case IR > 0 and the initial condition &,(O) = in; 
the other cases are similar. Using (2.15), we can integrate (2.16b,c) easily to  yield 

2(Q,(t)+&,(t)) = Edt+n:+2&2(0)> (2.17) 

which shows that an  important special case occurs when A = 0 (or A = 0 ( e 2 ) )  and 
the external force is precisely in resonance with the second mode. 

We remark that, while in the action-angle coordinates @i, &) or (Pt, Qi), the orbits 
described above appear to be heteroclinic rather than homoclinic, since they connect 
invariant closed curves a t  different Q, values, in the original ( P r ,  qi)-coordinates, the 
surface Pl = jjl = 0 corresponds to  the origin in (PI, ql)-space and the orbits are 
homoclinic to the manifold (q l ,  p l )  = ( 0 , O )  ;@, = ?jPz = constant. This will be important 
in $5. 

I n  the next section we shall use (2.15)-(2.17) in perturbation calculations for the 
case p 4 0. 

3. The effects of weak forcing on the 2-mode truncated model 
Melnikov (1963) suggested a regular perturbation method applicable to  planar 

systems subject to small periodic perturbation. Holmes & Marsden (1982a, b, 1983) 
subsequently adapted this method to deal with two- and (N > 2)-degree-of-freedom 
Hamiltonian systems. We outline the method in the present context. Consider a 
two-degree-of-freedom system with Hamiltonian 

(3.1) 

so that, for E = 0, the angle 8 is a cyclic coordinate and hence the action Zis conserved. 
Thus Z is a second integral, in addition to the total energy Ho. We assume that HO 
and Z are integrals in involution. The perturbation theory addresses the question of 
how the 'completely integrable' structure breaks up for E + 0, small. Specifically, we 
assume that, for each Z in some interval L c R, the unperturbed ( q , p )  system, 

HE = HO(q,p,Z)+eH1(q,p,  1 , 8 ) + O ( e 2 )  = const., 

. dHo . aHo 
q = - .  P =  -- 

2p &I ' 

has a homoclinic orbit (=  separatrix) ( g , p )  = Z(t, I), with energy H0(Z, I ) ,  to a hyper- 
bolic ( = non-degenerate) saddle-point Zo(I) ,  and that the unperturbed frequency 

is strictly positive in a neighbourhood of every homoclinic orbit for ZE L. The method 
of reduction (Whittaker 1959, chap. 12), can then be applied to eliminate I by 
inverting (3.1 ) : 

(3.4) z = ~ ( q , p ;  H E )  + E Y i ( q , p ,  e ;  H E ) + o ( ~ ~ ) ,  

and a simple calculation involving implicit differentiation of (3.1), with Z given by 
(3.4), yields the reduced, 2n-periodically forced, one-parameter (H€-)family of 
single-degree-of-freedom systems : 

(3.5) 
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where ( )' denotes d/de. Also from (3.1)-(3.4) we obtain 

See Holmes & Marsden (1982a, 1983) for computational details. 
Our assumptions on HO imply that the unperttwbed, reduced Yo-systems ((3.5), 

E = 0)  also have a family of homoclinic orbits Z(0, I). Under the 2n-periodic forcing, 
these homoclinic orbits typically split, and if the Melnikov function 

~ ( 8 , )  = Jm { ~ o , ~ i } ( ~ ( e , ~ ) , ~ , e + e , ) d e ,  I E L ,  (3.7) 
-m 

has simple zeros, then, for E + 0 small, this splitting results in transverse homoclinic 
orbits to a hyperbolic, saddle-type, periodic orbit for each I E  L. Application of the 
SmaleBirkhoff homoclinic theorem (Smale 1963 ; Moser 1973 ; Guckenheimer & 
Holmes 1983) then reveals the existence of an invariant Cantor set for the Poincarh 
map on each constant-energy surface H" in some interval. This in turn implies the 
existence of chaotic motions and precludes the existence of analytic integrals of 
motion independent of the total energy He. To avoid explicit computation of Y o ,  Y1 
in examples, we have the identity 

(Holmes & Marsden 1983). 8(t, I) is defined in (3.12). 
If we attempt to apply the theory directly to the averaged system (2.13), several 

problems arise. We shall tackle these in turn, and in doing so extend the Melnikov 
theory as necessary. We start by neglecting damping (ak = 0 1 ,  so that P;, = &I, = o 
(k 2 3), for the truncated system. Unfortunately we cannot conclude that the 
(N-2)-parameter family of invariant tori (Pk = Pk(0), Qk = Qk(0)) persists, for the 
higher-order terms neglected in truncation typically destroy them. In particular, 
since they are all in resonance (0, E 0) we cannot appeal to KAM theory: Arnold 
(1978). In this section we therefore restrict ourselves to the two-degree-of-freedom 
model with Hamiltonian 

HP = +S{QPl+APz+pPl(2(Pz-Pl))~ COS~Q,}-~* Pl COS(~&,+~Q,) .  (3.9) 
49 

(Here Q1 and Pl play the role of q, p, Pz that of I and Qz of 6 ;  also note that 0 < P < 8 :  

,U/E is the small parameter.) 
We first note that, since 

(3.10) 

and the homoclinic orbit Pl(t) = (Pl- (Q2/2P)) sech2 (s(2PP1-Q2):t) lies on the level 
set HO = +SAP,, we require 

1 AQ [ > 2PPz-Q2 (Q + 0), (3.11) 

for reduction to go through (cf. (2.16~)). Since passage through resonance, and the 
exact resonance A = 0 itself, are interesting, we will develop a more general theory 
which does not appeal to reduction and hence does not require that Q + 0. J. Koiller 
(private communication) has already sketched a general theory along these lines, and 
in the Appendix we develop the special case of two degrees of freedom. We also deal 
with non-Hamiltonian perturbations, since we shall encounter these in analysing the 
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damped model in $4. We remark that, if Q + 0 on the unperturbed homoclinic 
manifold, then the ' non-reduced ' theory is equivalent to the reduced theory: see the 
Appendix. The key results are propositions (A 2), (A 3) and (A 4), which we apply 
below. 

The Hamiltonian theory (proposition A 2) states that, if the Melnikov function 
m 

M(Io ,  6,) = 5 [{p, f&, p )  + {Ho ,  p )  Il(t)l W, I,), I,, &t, I,) + 0,) dt, 
-m 

t (3.15) 

where 

and I 
has simple zeros as 8, varies for I, fixed in some interval L c R, then there exists 
a one-parameter family of periodic orbits near the unperturbed orbits 
( q , p ,  I, 0) = (%,(I,), I,, * ) each of which possesses transverse homoclinic orbits. Here 
{HO, f P } ( q ,  p )  denotes the (q,  p)-Poisson bracket (aH0/aq) (aHl/ap)  - (aHo/ap) (afP/aq). 
Thus, as we describe in $5,  the system has chaotic solutions. 

Substituting the Hamiltonians and unperturbed solutions of the present problem 
into (3.12), recalling that here p/s < 1 plays the role of s and that we assume 
e2 4 ,u 4 s 4 1, we obtain 

ds = - -"2w1 5: Pl(s) sin (2&,(s) +2Q2(s)) ds. 
2g 

(3.13) 

Using the expressions for Pl(t), 2&,(t), 2&,(t) from (2.16)-(2.17), and noting that Pl(t) 
is even, as are cos2Q1(t), [2(P2-P1(t))]: and cossdt, while sin2Ql(t) and sinsdt are 
odd, and noting that F(t )  = j: even (s) ds is odd, we substitute (3.13) into (3.12) and 
finally obtain 

Ep"J4 + s,8QJ5] sin 2&,, , (3.14) 
EW2Wl 

4g 
w,, 8,) = JW,, Q2,)  = - [I?$, i- I?J2 - oy3 

where m 

G(t) cos 2Q1(t) cos (4) 
dt , 

J2 = [2(P2 - P I W  
m 

J3 = Pl(t) cos (sdt) dt, 
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While the asymptotic behaviour of Pl(t) = [P, - (Q2/2B2)] sech2 [s(2$P2 -Q2t):] as 
t + f 00 guarantees that all the integrals converge, only Y3 can be evaluated explicitly 
(by the method of residues). However, we note that, provided the quantity 
Y = p(Y, +Y2) -Q93 +@(BY4 +a$5) =t= 0, then M(P2, Q2,) necessarily has simple 
zeros at  Q2, = f+n  for all n. 

To show that parameter values exist for which the integral 9 is non-zero, we use 
(2.16)-(2.17) and rescale time (st = 7 ,  es = y) to obtain 

€W2Wl Y = % (  p2-- &)[ p ~ , - p ( ~ ~ - - )  Q2 I ~ - Q I ~  

49 ag 2P 

+B ( P2-- $) (B14-Q15)] sin2Q2,, (3.16) 

where 

cc 
I3 = J-, S2(7) cos (AT) d7, 

00 f12(7) [4p,-3 (s-6) s2(T)] 

I -  sin (D(7)) cos (D(7)) E(7) d7, 
- s_, [ 2 P 2 - ( 2 P 2 - g )  a2(T)] 

and 

S(T) = sech [(2$P2-Q2)47], \ 

E(7)  = J, S2(y) cos ( A c )  d& 

We note that this rescaling reveals that M(P2, Q2,) does not depend on s. Now when 
7 = 0, the integrands of the I ,  above are as follows : I ,  : S/B; I ,  : B/Q ; I3 : + 1 ; while 
the integrands of I4 and I5 are both zero, since these integrals involve the products 
of odd functions. Thus we have the total integrand at 7 = 0 of: 

(3.17) 

(3.18) 

(3.19) 
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To guarantee that the non-zero contribution near r = 0 dominates the whole integral, 
i t  is merely necessary to  ensure that the common factor S(7) is ‘steep’ enough, so 
that the decay of this term as 171 grows renders the contributions of I4 and I5 
insignificant. This occurs if (2pP2 - Q2): is sufficiently large relative to  I A 1, for then 
E(7) is a relatively slowly varying function. Thus, applying (A 1) and (A 2) of the 
Appendix, we have proved : 

THEOREM 3.1. Suppose that (2p2Pz -a2) is positive and sugiciently large relative to 
I A I .  Then, for p/c  0 suficiently small, the two-degree-of-freedom Hamiltonian system 
(3.9) possesses a one-parameter family of invariant, closed curves close to the set 
(Ql, P,) = [$ cos-l( -s2//3(2Pz)!), 01; Pz = constant. Eachmemberof thissethastransverse 
homoclinic orbits. 

Remark. Since the integrand (3.18) is non-zero for I A I small compared with 
(2/32P2--82), and since i t  is an analytic function of all the parameters, it  has at most 
only a finite number of isolated zeros in any bounded region of parameter space. Thus 
for almost all parameter choices we can assert that  M (  P2, Q2J has simple zeros a t  !p, 
n = 0, +1, +2, ... . 

We will discuss the implications of this result in $5, after we consider the more 
realistic model of (2.13), involving N > 2 modes and suitably weak damping. 

4. The (N > 2)-mode truncated model subject to weak forcing and damping 
While the undamped (N > 2)-mode truncated model of (2.13) is trivially soluble for 

Qk = const, Pk = const ( k  2 3), delicate resonance effects in the higher-order terms 
(O(c2), O(cp)) which have been neglected, can be expected to  destroy the family of 
invariant manifolds given by these solutions. Thus the inclusion of damping is 
essential. Fortunately, damping acts selectively, and straightforward integration of 
the k 2 3 components of (2.13) shows the following: 

PROPOSITION 4.1. All solutions of the truncated system (2.13) approach the (N+2)- 
dimensional invariant manifold P k  = 0, k = 3,4,  . . . , N, at .an exponential rate as t +MI. 

This result implies that  we can ignore behaviour in all modes other than the first 
two, for the attracting manifold {Pk = 0 ; k 2 3) is normally hyperbolic and higher-order 
terms cannot destroy it,  although they may perturb it slightly (Hirsch et al. 1977, 
and cf. $5 below). Although we now have a two-degree-of-freedom system again, some 
problems absent from $3 intrude. I n  particular, the invariant closed curves (periodic 
orbits) {(Q,, P,) x [$ cos-l( -s2//3(2P2)4), 01, Pz x const} of Theorem 3.1 all disappear 
when a2 + 0, as the P2 evolution equation, 

I P, = -p {% P, sin(2Q,+2Qz)+2(al-a,) Pl+2azP2 , 

clearly shows, for Pz = Pz(0) e-2pagt when Pl = 0. However, (4.1) suggests that  orbits 
that approach Pl = 0, but are not asymptotic to it, might balance dissipative effects 
due to a,, a2 with excitatory effects due to  the Hamiltonian term Pl sin (29, + 2&,), 
provided that (2Q1 + 2Q2) varies sufficiently slowly (while Pl is small) to  remain of 
one sign, specifically negative, so as to supply energy to P2. Before we apply 
proposition A 4 to check this, we compute the non-Hamiltonian Melnikov function 
of equation (A 13) and apply proposition A 3. The computation yields one term in 
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addition t o  the Hamiltonian contribution of (3.17) : 
W 

cos 2&,(t)} 201, P,(t) dt 

(Recall that  S(T) = sech (2pP2-Q2): 7 ) ) .  Clearly, for a, sufficiently small compared 
with the common factor w2wl/4g of the ‘Hamiltonian’ integral of (3.17)’ this 
additional &,,-independent term cannot remove the simple zeros of M(Pl, Q2,). Thus 
the perturbed 2-manifolds near to  (Q,,  P,) = (t cos-l( -Q//3(2P2)t), 0) still have 
transverse homoclinic orbits for small a,. However, the presence of (4.2) in M(P2, Q2,) 

(see (3.14)-(3.18)) does modify our estimate of the value of Q2, for which M has simple 
zeros. Specifically we find 

w2w1 

49 
-- (2pP2-Q2)  [A+B(2$P2-Q2)] sin2Q2,+al(2pP2-Q2)C = 0, 

or (4.3) 

where A, B and C involve the integrals of (3.17) and (4.2) and therefore also contain 
the expression (2$P2-Q2). We will use (4.3) below. 

We now return to the question of recurrence. We compute the variation in P2 
around a segment of the unperturbed homoclinic manifold bounded away from 
P, = 0: 

T 
,AP2 = P2(t) dt I 

= JT -p [A P, sin(2&,( t )+2Q2(t))+2(a,-a2)  P1(t)+2a 
-T 29 

E p2-- I -’ ( ”’) S r T  S2(7) [% s i n ( A ~ + r c + 2 Q ~ , ) + 2 ( a , - a ~ )  dr-4pa2P2T, 1 =- 
2p -rT 

6T 

= (2P2P2 -a2) S2(7) cos AT d7 sin 2Q2, 
4eP9 -6T 

- 2p(a1-a2) (2pP2-Q2): tanh (s(2$P2-Q2):T)-4pa2 P2 T 
eP J 

(4.4) 
The limits of this integral must be taken as T = K In (e/p),  as described in the 
Appendix (proposition A 4), for then we guarantee hyperbolicity in the (P,, &,)- 
directions for the Poincar6 return map. (Recall that, in our example, p/e plays the 
role of the small parameter in the general theory and that B > 0 is fixed, albeit also 
small.) The first integral of (4.3) cannot be evaluated explicitly, but since 
T = Kln(e/p) and X2(eT)-+0 (and tanh2 (eT+l)) exponentially as T-too, (4.3) can 
be evaluated with an error of O( ( p / e ) E K ~ ( 2 ~ P ~ - n n ) )  to yield an  expression of the form : 

] sin2Q2, 
p w2w,xA 

AP--- cosech “ e p  49 

--(al-a2) (2pP2-Q2)t-4epa2 P2 K In + ... . (4.5) ($> 



378 P .  Holmes 

If I A I 4 (2pPz-SZ2): (as in theorem 3.1), (4.4) simplifies to 

sin2&,,-2(a,-a2) -4e/3%,P2K1n 1 AP, = - P (2P2P2-SZ2): 
E P 2  

Since c2 < y 4 B ,  E In ( ~ / y )  is small and zeros of AP, are obtained by a balance of the 
leading term. Thus, for 2pP2-SZ2 > 0 (cf. 52), we require 

(w2w1/2g) sin 2Q,, w 2(a, - a,) 
or, using (4.3), 

a, c = (a,-a2) ( A  +B(2PP2 -a,)). (4.7) 

Since A,  B,  C themselves contain the expression (2P2P2-SZ2) and cannot be evaluated 
explicitly, we cannot give precise conditions on the parameters (0, w,, SZ ,  A ,  /3, a,) 
for which the hypothesis of propositions A 3 and A 4 are simultaneously satisfied. 
However, it should be clear that  values of a,, a, > 0 can be chosen so that (4.7) is 
satisfied with Pz > SZ2/2$. Let us denote the resulting zero by Pz. Further slight 
variation of a,, a, will guarantee that P t  is a simple zero ((&iPz/aPz) (P, = P;) 9 0). 
Thus we can conclude: 

THEOREM 4.2. For 0 < c2 4 y 4 E 4 1 open sets of parameter values A ,  a, a, can be 
found for which the damped, truncated N-degree-of-freedom Hamiltonian system (2.13) 
induces a PoincarC map @ on the cross-section Qz = const., such that @ has an invariant, 
hyperbolic Cantor set A near the set (Ql, P,, P,, Pk) = (i c0s-l (-SZ/P(ZP,*)i), 0, Pt, 0); 
k = 3, . . . , N .  The dynamics of @ restricted to A are conjugate to those of Smale’s horseshoe, 
so that @ contains infinitely many periodic orbits, including orbits of arbitrarily long 
period, along with bounded, non-periodic (= ‘chaotic’) orbits. 

We next turn to  the implications of this result for the full (non-averaged) system. 
We will discuss the physical consequences of the periodic and chaotic orbits of the 
horseshoe for the surface motions of the fluid in 56. 

5. Implications for the ( N  > 2)-mode full model 
The conclusions of this section are based on the theory of normally hyperbolic 

manifolds due to Hirsch et al. (1977). The theory has already been used in 553 and 
4 and the Appendix to argue that certain invariant sets in the integrable, undamped 
(y = 0) ,  truncated system persist for y -+ 0. Briefly, if a system x = f(x) has a 
hyperbolic, invariant set Q, then any nearby system x = f(x) + g ( x )  will have a similar 
( = topologically equivalent) set SZ‘ ,  provided the perturbation is of sufficiently small 
size I (  g 11 in the neighbourhood of 8: that is, g and its derivatives are required to  
be uniformly small. Similar results apply to  mappings z-t F ( z )  and z+F(z) + G(z). 
The added complication in this paper is that the ‘perturbed’ system-the full, 
unaveraged system - is explicitly time dependent, whereas the averaged system is 
not. We will cope with this by suspending the time-dependent vector field. 

The material above, culminating in Theorem 4.2, shows that the N-mode, damped, 
averaged, truncated system (2.13) induces a Poincare return map @ on the (2N- 1)- 
dimensional cross-section Qz = 0, such that @ has an invariant Cantor set A :  a Smale 
horseshoe. This in turn implies that the flow of (2.13) contains a (topologically one- 
dimensional) bundle of solutions R whose cross-section is A .  This set lies near the 
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piI 

41 

I 

FIGURE 2. The invariant Cantor set in the original (pl, q,)-coordinate system. 

action set {P2 = P:; Pk = 0, k = 3, ..., N).  Now the truncated system and the full 
system can be written in the forms (cf. (2.11)-(2.12)): 

Y = SXO(Y) + P . m Y ) ,  (5.1~) 

] (5.lb) 
and Y = s x o ( y ) + p ~ ( Y ) + ~ 2 x 2 ( Y , 8 ;  a7p)+EpX3(Y,e,E,p), 

e = @, 

where X2 and X 3  are 2n-periodic in 8 and X2* "y ,  8,0,0) are O(1). Here 8 = wt is a 
time-like coordinate and (5.1 b) represents a suspension of the time-periodic vector 
field sXo+pX1+ ... in the extended phase space [W2N x S'; cf. Guckenheimer & 
Holmes (1983, chap. 1.5). 

To draw conclusions about the behaviour of (5.1 b) from that of (5.1 a ) ,  we consider 
a second Poincar6 map, the period map Y :  R2N + R2N induced by the flow of (5.1 b) 
on the global cross-section 8 = 0 (t = 0, ~ A / o , .  ..). Since e2/p < 1,  this map is well 
approximated by the time 2n/w flow map $znlo of (5.1 a) .  (A simple Gronwall estimate 
(Hartman 1964) shows that 11 Y-$2rrjo 11 = 0(c2/p) . )  Thus we can apply the normal 
hyperbolic persistence theory to the maps q52nlo and Y = $2xlw + O(e2/p) and conclude 
that the period map Y has an invariant set 52' near to the invariant set 52 of $2njo. 

To prepare for the final section of this paper, we recall the canonical 
transformations 

of $2, and, inverting these transformations, we sketch the structure of the Cantor 
set 52 (or 52') in the original (q , ,p , )  coordinates on the global cross-section 8 = 0 
(t = 0). Since (P,, Q,) and @,, 4,) play the roles of action and angle, or amplitude 
and phase, the double heteroclinic loop structure of the integrable system in 
(Pl, &)-space (figure 1) becomes the characteristic figure-of-eight period-two reson- 
ance in the (pl, ql) slice of the cross-section 0 = 0; see figure 2, and note that the pair 

( 9 , , p , ) - t ( B n , 2 3 n ) ~ ( Q n , P , )  (5.2) 

13 PLM 162 
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of elliptic points on the p ,  axis represents an orbit of period two for the 2n/w-period 
map. 

We remark that the Cantor set whose construction is outlined in the Appendix can 
be embedded in a manner which reflects the fact that  orbits originating near the 
origin in (p,,q,)-space can describe loops with p ,  positive or negative in arbitrary 
sequences (cf. Greenspan & Holmes 1983, 510.6.2). Finally, we note that, since 
@, = P,, j3, = $(P,-P,) and P2 x P: remains almost constant, as the envelope of 
p ,  = - (2qj3Jw1): sing, increases that of p ,  = - (2qj3,/w2): sing, decreases. We now 
turn to the physical implications of this for fluid-surface motions. 

6. Conclusions and physical implications 
I n  the original formulation of the finite-dimensional model (2.2), the configuration 

variables qn(t) represent amplitudes of ‘linear ’ modes (eigenfunctions) $n(x) of the 
surface-displacement function ~ ( x ,  t )  ; cf. (1.1) and Miles (1976, equation (2 .4~)) .  We 
now use this representation to draw conclusions from the results established above. 

We first note that, from proposition 4.1 and the remarks of 55, the amplitudes 
@ k  = Pk of all modes but the first two remain small (of O(e2/p) )  owing to the presence 
of the damping terms -2pak Pk in (2 .13) .  Thus, these higher modes respond a t  most 
weakly, as ‘slave’ modes, and the energy resides primarily in the first two modes. 
Of course these modes are not necessarily the lowest in frequency, and perhaps should 
rather be called resonant modes, for they are characterized by the frequency 
relationship (2.4) and not absolute frequency values. In  particular, they need not have 
characteristically simple ‘low-mode ’ spatial forms (cf. Ciliberto & Gollub 1985). 

It is appropriate here to remark that damping can sometimes offset higher-order 
resonances of the form wk & wl f w, = O ( E )  (which we have assumed not to  occur). For 
example, if the coefficients ak increase sufficiently rapidly with k, then strong 
hyperbolic attraction due to  - 2pak Pk dominates the O ( E )  resonant terms. Using this, 
it  might be possible to deal with multiple resonances arising in ‘harmonic-mode’ 
problems such as the rectangular tank of Miles (1984e). 

We now consider the dynamics exhibited by the two modes $, and $, as expressed 
by the time histories of q1 and q,. Recall that  the properties of the Poincark return 
map Q, induced by the flow of the truncated system (Theorem 4.2) were obtained from 
a computation involving orbits which continually return to  the neighbourhood of 
(Q,, P,) = ($ c0s-l (-sl/p(2P,*)$),O) but do not remain there too long, the characteristic 
recurrence time of such orbits being O ( K  In ( ~ / p ) ) .  Since K can be chosen with some 
freedom, typical orbits associated with the invariant set A and its suspension SZ are 
quasi-periodic, and spend a relatively long time near P, = 0 ( I  q1 I = 0) ,  with shorter 
excursions to higher values of P,. The time dependence suppressed in the canonical 
coordinate changes and averaging procedure, causes a rapid oscillation at the 
frequencies @ in q1 and w in q,, on which the slowly varying envelope described above 
is superimposed ((2.6)). Finally, since j, decreases when #, increases (P, = 2@, 
remaining approximately constant), we obtain the typical time histories of the modal 
amplitudes q1 and q2 sketched in figure 3. These time histories indicate an interaction 
in which energy is exchanged between the spatial modes $,(x) and $,(x) in an 
irregular fashion. 

We conclude with some comments on the relevance of the foregoing analysis to 
experiments on surface waves such as those of the Keolian and Gollub groups, 
concentrating on the latter experiments, and especially those reported by Ciliberto 
& Gollub (1985), in which relatively detailed information on spatial structures is 
available. These experiments and our theory both exhibit a primary quasi-periodic 
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FIQURE 3. Typical time histories of modal amplitudes. 

interaction between a pair of modes, with very little energy present in other modes. 
We remark that in Keolian & Rudnick (1984) there is some evidence of an interaction 
involving three modes, but that this is not as clear as the two-mode observations of 
Ciliberto & Gollub (1985). 

A major difference between the present analysis and the Cilibertdollub ex- 
periment is in the resonance condition. Following Miles (1976), we have assumed a 
2: 1 : 1 resonance, (2.4), whereas figure 3 of Ciliberto t Gollub (1985) suggests that 
their system is closer to a 2:2:1 resonance. Reference to (2.2) shows that 1 : l  
internal resonance terms do not emerge until second-order, in terms of the type 
(Ijk $3, $3, $3n)i cos dk cos I& sin dm sin dn, and thus that second-order averaging will be 
required for such a problem. We have not yet attempted this calculation. (We remark. 
that Miles (1984c, d )  develops the 1 : 1 : 1 resonance case with horizontal excitation, 
but, upon examination, the integrable limiting system (Miles 1984c, equations (3.12, 
4.1)) is extremely degenerate and does not possess any homoclinic manifolds to 
hyperbolic invariant sets. Thus the perturbation theory developed here cannot be 
applied.) In spite of this discrepancy, there are clear qualitative similarities between 
the envelopes of ql( t )  and qz(t )  in figure 3 and the slowly varying modal amplitudes 
of figure 5 in Ciliberto & Gollub (1985). Those authors note that the typical 
modulation has a period of about 15 seconds compared to the driving oscillation of 
x 16 Hz. While we cannot make numerical comparisons, this is consistent with our 
O(K In (e/p))  quasi-periodic modulation. Since the direct measurement of surface 
motion at a point in space, or of its time envelope, involves addition of the modes 
q l ( t )$ l ( z )  and q2( t )$2(z ) ,  it  is less easy to compare other observations in the 
Cilibertdollub work. However, we do note that, if the force amplitude ,uo201/2g 
is small in comparison with damping terms pak,  then m homoclinic orbits survive, 
for the term (4.2) of the damped Melnikov function dominates and the function has 
no zeros. Thus, for given dissipative forces, there is a critical force level that must 
be exceeded before chaotic motions can occur. This is observed experimentally. We 
also note that our results rely on relatively close resonance ratios (eA and ef2 should 
be small quantities) and thus one only expects to find chaotic motions for sufficiently 
large force amplitudes and near specific forcing frequencies. 

This research was partially supported by NSF CME 84-02069 and ONR under 
N00014-85-k-0172. The author would like to thank the referees for their suggestions 
and comments. 
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Appendix. Homoclinic orbits without reduction, and their consequences 
for Hamiltonian and weakly damped two-degree-of-freedom systems 

(A 1 )  I As in (3.1), let 
W q ,  P ,  I , @  = P(q, P ,  4 + e m q ,  P ,  198) + 0(s2) ,  

(q,  P )  E R2, (198) E R+ x S', 
be a perturbed Hamiltonian energy function, with Ip 2n-periodic in 8. Suppose that, 
for each I in some interval L c R, the unperturbed Hamiltonian Ho(q, p ,  I) has a level 
set ( H O P '  (h) (h = h(I ) )  which contains a homoclinic orbit ( q , p )  = Z ( t ,  I )  to a hyperbolic 
saddle point (q ,  p )  = Zo(I).  Let the corresponding angle variable on the homoclinic orbit 
based at (5(t, I), I, 0 )  be 

8(t, I )  = 6 - (Z(S, I), I) ds. (A 2) 

This implies that the unperturbed system has a normally hyperbolic two-manifold 
& = { ( q , p ,  I ,  8 )  I ( q , p )  = Zo(I),  IE  L} with three-dimensional stable and unstable 
manifolds wS(&), Wu(r') which intersect in a three-manifold A = W(&) n Wu(&), 
parametrized by I, 8 and t and given by 

(q, P ,  4 8 )  = ( d t ,  4 , I ,  m, I )  + 81, (A 3) 

see figure 4, below. Let Q ( q , p , I )  = aHo/aI be the unperturbed frequency. We shall 
not assume that Q(Z( t , I ) , I )  remains non-zero on A, although ultimately we shall 
require that Q(Zo(I),  I) 4= 0 on ro. Finally, let 

denote the 'q-p' Poisson bracket of Ho and H1. 
As in the usual Melnikov method, we will develop a perturbation theory to detect 

transverse homoclinic orbits to non-wandering sets near ro. We start with a 
perturbation result which is a direct consequence of the theory of hyperbolic 
manifolds (Hirsch et al. 1977) : 

LEMMA A 1.  For e 4= 0 suficiently small, the Hamiltonian system (A 1)  possesses a 
normally hyperbolic, invariant two-manifold r, = r, + O(s) with three-dimensional local 
stable and unstable manifolds K$(rc) e-close to KA;(ro). 

We will now sketch the proof of several results which permit us to prove the 
existence of chaotic motions in systems like (A 1). 

If we assume that the perturbed action, 

remains uniformly s-close to the unperturbed action I = I .  = constant; then, as in 
the standard Melnikov theory, we can write orbits in the stable and unstable 
manifolds as power series in E ,  uniformly valid in the semi-infinite intervals indicated : 

stable: (e,c,@) = (Z( t , I )+e$( t , I ) ,  I + s q ( t ,  I ) ,  8 ( t , I )+e8; ( t , I ) )+0(e2 )  
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To guarantee (A 4) it  is sufficient (but not necessary) to assume that a€P/ai3+0 
exponentially as Z ( t ,  I) +%,(I). For the proof of uniform validity in such cases, see 
Guckenheimer k Holmes (1983, chap. 4.5). 

To characterize the splitting of the perturbed manifolds WS(T,), W"(T,) in the 
four-dimensional phase space, we pick a point (Z(0, I,), I,, 6,) on the unperturbed 
manifold A and construct the normal 

to A in the slice I = I,. The scalar quantity 

MU,, e,, = n ( W ,  1,)) * [ q ( o ,  Io,e,) -g(o, I,,4l) (A 6) 

is then a good measure of the splitting of stable and unstable manifolds for the 
perturbed problem. In fact M /  I I  n II = (M/((aHO/aq)2 + (aHO/i3p)2)f) (Z(0, I), I)) is the 
actual distance between the manifolds, measured along n. Here s(O, I,, 0,) represent 
solutions based at  I = I,, 6 = 8,, z = Z(0, I,) lying in the perturbed unstable and 
stable manifolds respectively. In  view of Lemma A 1 and the remarks following it, 
such solutions do exist for E sufficiently small. 

Let us write the perturbed differential equation corresponding to the Hamiltonian 
(A 1)  as 

(A 7 )  

2, = f(.@ I,, + W ( Z € : , ,  I,, 6,) + O(E2), 

1, = s w , ,  I,, 6,) + O(E2), 

6, = f4xe, I,) + O ( 4 ,  

etc. where f = (-, aHo --), aHo 
aP aq 

Using this notation we can write 

MV,, 6,) = ~ ( Z : ( O ,  I , ) ,  1,) A (ZW, I,, e,)-Z::ES(o, I,, o , ~ ,  (A 8) 

where the skew-symmetric wedge product is defined by a A b = a, b, -a2 b,. The first 
variational equation corresponding to (A 7), evaluated on the homoclinic mani- 
fold A, is 

q v "  = D,f( 4 t , I o ) ,  - I , ) ~ ; * U + D , f ( ~ : ( t , 4 J ) ,  I , ) f?U+g(Z(t ,I , ) ,I , ,  e ( t , I , )+8 , ) ,  

4'" = ... . 
49" = h(Z( t , I , , ) , Io ,~ ( t , Io )+60) .  1 (A91 

Using (A 9) and (A 5) in (A 8) we find 

Wo9 6,) = d(W9 I , ) ,  1,) A (z;(o, I,, 8,) -g(o, I,, 6,)) + 0 ( ~ 2 )  

Ef EW(O,I,, 00) -ds(o, I,, e,)) + o ( E 2 ) .  (A 10) 

To compute M(Io,  do) ,  we let Auls vary with t (replace '0' by ' t '  in the definition) and 
differentiate. After a straightforward computation using the chain rule, the first 
variational equation (A 9), and the fact that f is Hamiltonian and so tr D,f = 0, 
we find &' = (fA g )  + ( fA D,f) c. (A 11) 
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There is a similar expression for As. Integrating these expressions yields 

(A 12) 1 Au(-&Io,8,) = ~ u ( O , ~ o . ~ , ) + ~ ~  [(f A g ) + ( f A D z  f ) c ] d t ,  

AYT, I,, 0,) = A S ( O ,  I , ,  0,) + joT [(f A 9 )  + ( f A  Dzf) IS1 dt. 

Now since du. = f A x;? s ,  x;? are bounded and f = [aHo/apP, - aHo//aq] + O  as t + 00 

(we approach the hyperbolic saddle point in x-space), the quantities A", As+O as 
S, T+m, and subtracting the components of (A 12) yields 

m 

M(Io,  6,) = e If A g+ (f A DI f )  I , ( t ) l  ( Z ( 4  I , ) ,  I,,  e(t, 1,) + 8,) dt, 
-m 

where 

We next observe that, if g = [i3H1/aq, - a H l / a p ]  is a Hamiltonian perturbation, 
then f A g  = {HO, H'} and 

2Ho a2H0 aH0 a2Ho f A Dz f = -- -+- - 
ap  a m q  aq a m p  

= { HO, g} = {HO, Q}; 

also, since h = -aHl/aO, we can rewrite I l ( t )  as 

provided that $2 =k 0. I n  this case, we have 

Apart from the presence of the additional factor of Ci (due to  the different 
normalization of the distance measure based on n = [aHo/aq ,  aHo/ i3p ,0 ,0]  of the 
non-reduced vector field rather than nR = (l /0) [ tlHO/aq, aHo/ap]  for the reduced 
field), the Melnikov function (A 16) is the same as that obtained in the reduction 
analysis, (3.8), cf. Holmes & Marsden (1983). 

Now suppose that M(Io,  8,) has simple zeros as a function of 19, for fixed I,. Use 
of the implicit-function theorem then implies that the actual distance 
d = (EM+ O(e2) ) /  ) I  n )I between the perturbed manifolds also has simple zeros as 0, 
varies. Thus, on each slice I = I ,  = constant, the perturbed manifolds appear as in 
figure 4 ( b ) .  

It remains to  determine behaviour in the I-direction, since 1 = O(e)  + 0 and I does 
not remain constant for the perturbed problem. However, I = I ,  + O(e)  does remain 
close to  its unperturbed value, and we will show that conservation of total energy 
He together with the non-degeneracy assumption that the unperturbed frequency 
C2(Zo(I),I)  + 0 on r,, guarantees that I returns to its initial value on re as the 
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P 

n { I  = I,) 

(4 (b)  

FIQURE 4. The homoclinic orbits and invariant manifolds in a slice Z = constant. (a) E = 0, 
unperturbed; (b)  E + 0, perturbed. M(Zo, 6,) has simple zeros. 

perturbed orbit returns to c. This follows from the fact that each level set 
HO = constant intersects r, transversely at a (locally) unique action value I, since 
V H *  (0, 0,1,0) = Q(Z, ( I ) ,  I) 8 0 on r,, by assumption. This in turn implies that the 
level sets of H"intersect I'' in unique action sets I = I€(@,  which are, of course, periodic 
orbits of the flow. Thus any homoclinic orbit to r, is necessarily asymptotic to the 
same periodic orbit as t +- 00 and t + + 00. We summarize : 

PROPOSITION A 2. Suppose M(I,,  0,) has simple zeros as 0, varies for each $xed 
I ,  E L c R. Then, fore #= 0 suficiently small, there exists a one-parameter family of closed 
orbits I = 16(0, I,) lying in the perturbed two-manifold re each of whose stable and unstable 
manifolds intersect transversely. M(I,,  0,) is given by 

I J-CC 

where 5(t, I,) is the unperturbed homoclinic orbit based at Fo(Io)  in the slice I = I,. 

We next consider the case of non-Hamiltonian perturbations. The proof of 
existence of the perturbed manifold re and the characterization, via N(Io, O,), of the 
splitting of its stable and unstable manifolds goes through just as before, although 
now M is given by (A 13) since g ,  h are not Hamiltonian. However, since total energy 
H" is not conserved, we must pay more careful attention to the slow 'drift' in the 
I-direction. First, however, arguing as in lemma A 1 and proposition A 2 above we 
have : 

PROPOSITION A 3. Suppose M(I, ,  0,) given by ( A  13) has simple zeros as 8, varies for 
each I ,  E L c R. Then, for e 8 0 suficiently small, there exists an invariant two-manifold 
4 s-close to r, whose stable and unstable manifolds intersect transversely. 

Remarks. Since solutions can now escape from the neighbourhood of any level set 
I = constant in r,, or, equivalently, Il(t) might not remain uniformly bounded, to 
prove the persistence of the invariant manifold re we use a set of bump functions which 
cut off the drift due to the perturbation qutside the neighbourhood of interest (cf. 
Hirsch et al. 1977; also see Robinson 1983). 
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P 

(4 (b)  

FIGURE 5. The horseshoe. (a) The horseshoe projected onto the (q,p)-plane; ( b )  strips; (c) the 
horseshoe in (p,p, &space; contraction in I case. 

To compute drift in the I-direction we consider the integral 
T T 

-S -S 
A(I,,O,;S,T) = I(T)-I(-8) = i ( t )dt= h ( 4 ( t , I , ) , I 0 , ~ ( t , I 0 ) + 8 , d t ,  (A 18) 

evaluated either on the homoclinic manifold A, in which case 4 = Z(t, I,) and 
4 = 8(t, I,), or in its neighbourhood. If A I  has a simple zero in I, at  I:, 8: for a fixed 
time interval (-S, T) E 08, then application of the implicit-function theorem shows 
that there exists an orbit near (&(t, I:) ,  I $ ,  B(t, I:) + 8:) that returns to its initial-action 
value I( - 8) as t --f T. 

We next use the homoclinic structure of proposition A 3 to show that, under 
suitable circumstances, this orbit is also recurrent in the variables. ( q , p )  = z and 8 
and hence that the ‘chaotic’, homoclinic behaviour of the Hamiltonian case 
(proposition A 2) persists near the action set I, = I,* when damping is added. 

We consider the three-dimensional Poincarh map induced by the flow of (A 7) on 
the cross-section 8 = 8, near the perturbed manifold re n (8 = O,}. To ensure that 
solutions return to (8 = So},  we require that Q(q ,p ,  I,) =I= 0 on re. The existence of 
transverse homoclinic orbits to r, implies that, in the (q,p)-coordinate plane, a small 
region B, sufficiently close to the 1 -manifold A, is carried around near A and returns 
near r, n (8 = 6,) bent in the horseshoe shape of figure 5. Thus, as in Smale (1963) 
or Moser (1973), two strips H,, H2 can be found whose images V,, V, intersect H I ,  
H2 in such a fashion that the (projected) return map F: B+ R2, restricted to 

is a bounded perturbation of a (piecewise) linear map with real eigenvalues 
I A, I < 1 < I A, I. Then, in the two-dimensional case, one can prove the existence of 
an invariant Cantor set A = (-):--a; Fn(B) on which F is conjugate to a shift map 
on two symbols. This is Smale’s horseshoe, which displays the chaotic behaviour 
described in Guckenheimer & Holmes (1983, chap. 5). 

The third (I-)direction does not really change this picture, provided that one has 
hyperbolic contraction (or expansion) in that direction. The Cantor-set construction 
goes through essentially unchanged, but with intersecting, 3-dimensional boxes Hi, 
6,  instead of strips. (In fact the construction generalizes to infinite-dimensional 
maps: (cf. Holmes & Marsden 1981 and Hale & Lin 1984.) From the preceding 
discussion, the quantity A I  provides the requisite measure of behaviour in the 
I-direction, and all that remains to be done is to estimate the time required for points 
in the box B (strips H i )  to flow around near A and return to B. This will give the 
time of flight S+ T required to compute A I .  
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Holmes 6 Marsden (1982a) have solved this time-of-flight problem. Basically, one 
needs to ensure that the preimage and image of a given transverse homoclinic point 
(say near a simple zero (I:, 0:) of N(Io,  0,)) are chosen such that the tangent spaces 
of the stable and unstable manifolds subtend an angle of O( 1) at these points. Since 
the angle is O[s(aM/aO) (I,, O,)] = O(sM) at (I:, O:), one must let the expansion 
and contraction near the saddle-type set r, n {O = O,} act to increase sM to O(1). 
This is easily estimated from the linearized map at r, n (0 = O,} and one obtains 
S, T = O(ln (l/e)). The final outcome of the arguments sketched above is then: 

PROPOSITION A 4. Suppose that the hypotheses of proposition A 3 are satisfied and, 
in addition, for S = T = K In ( 1 / s )  fixed for 8ome K ,  AI ( Io ,  O,, - T ,  T )  of (A 18) has a 
simple zero I: in  I ,  forfixed OoE [0 ,2x ) .  Then there exists an invariant Cantor set A near 
the point r, n (0 = O,} n { I  = I:} on which the flow of (A 7) induces a map conjugate to 
Smale’s horseshoe map. 

COROLLARY A 5 .  A contains countably many periodic orbits, including orbits of 
arbitrarily high period, uncountably many, bounded, non-periodic orbits, and a dense 
orbit. All the orbits are of ‘saddle’ type; thus A is a chaotic invariant set, but not an 
attractor. 
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